Author Affiliations
Abstract
1 CAS Key Laboratory of Geospace Environment and Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
2 CAS Center for Excellence in Ultra-Intense Laser Science (CEULS), Shanghai 200031, China
3 School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
4 National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
5 Anhui Specreation Instrument Technology Co., Ltd., Hefei, Anhui 230088, China
6 Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
A compact broadband Compton spectrometer with high spectral resolution has been designed to detect spectra of laser-driven high-flux gamma rays. The primary detection range of the gamma-ray spectrum is 0.5 MeV–13 MeV, although a secondary harder gamma-ray region of 13 MeV–30 MeV can also be covered. The Compton-scattered electrons are spectrally resolved using a curved surface detector and a nonuniform magnetic field produced by a pair of step-like magnets. This design allows a compact structure, a wider bandwidth, especially in the lower-energy region of 0.5 MeV–2 MeV, and optimum spectral resolution. The spectral resolution is 5%–10% in the range 4 MeV–13 MeV and better than 25% in the range 0.5 MeV–4 MeV (with an Al converter of 0.25 mm thickness and a collimator of 1 cm inner diameter). Low-Z plastic materials are used on the inner surface of the spectrometer to suppress noise due to secondary X-ray fluorescence. The spectrometer can be adjusted flexibly via a specially designed mechanical component. An algorithm based on a regularization method has also been developed to reconstruct the gamma-ray spectrum from the scattered electrons.
Matter and Radiation at Extremes
2021, 6(1): 014401
Author Affiliations
Abstract
1 CAS Key Laboratory of Geospace Environment and Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei230026, China
2 Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang621900, China
3 CAS Center for Excellence in Ultra-intense Laser Science (CEULS), Shanghai200031, China
4 IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai200240, China
In the laser plasma interaction of quantum electrodynamics (QED)-dominated regime, γ-rays are generated due to synchrotron radiation from high-energy electrons traveling in a strong background electromagnetic field. With the aid of 2D particle-in-cell code including QED physics, we investigate the preplasma effect on the γ-ray generation during the interaction between an ultraintense laser pulse and solid targets. We found that with the increasing preplasma scale length, the γ-ray emission is enhanced significantly and finally reaches a steady state. Meanwhile, the γ-ray beam becomes collimated. This shows that, in some cases, the preplasmas will be piled up acting as a plasma mirror in the underdense preplasma region, where the γ-rays are produced by the collision between the forward electrons and the reflected laser fields from the piled plasma. The piled plasma plays the same role as the usual reflection mirror made from a solid target. Thus, a single solid target with proper scale length preplasma can serve as a manufactural and robust γ-ray source.
gamma-ray plasma mirror preplasma 
High Power Laser Science and Engineering
2020, 8(4): 04000e34
Author Affiliations
Abstract
1 Department of Modern Physics & CAS Key Laboratory of Geospace Environment, University of Science and Technology of China, Hefei, Anhui 230026, China
2 Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
3 National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
Two transmission curved crystal spectrometers are designed to measure the hard x-ray emission in the laser fusion experiment of Compton radiography of implosion target on ShenGuang-III laser facility in China. Cylindrically curved -quartz (10–11) crystals with curvature radii of 150 and 300 mm are used to cover spectral ranges of 10–56 and 17–100 keV, respectively. The distance between the crystal and the x-ray source can be changed over a broad distance from 200 to 1500 mm. The optical design, including the integral reflectivity of the curved crystal, the sensitivity, and the spectral resolution of the spectrometers, is discussed. We also provide mechanic design details and experimental results using a Mo anode x-ray source. High-quality spectra were obtained. We confirmed that the spectral resolution can be improved by increasing the working distance, which is the distance between the recording medium and the Rowland circle.Foundation of China under Grant Nos. 11105147, 11375197 and 11175179.
curved crystal spectrometer curved crystal spectrometer hard x-ray hard x-ray laser fusion laser fusion 
High Power Laser Science and Engineering
2016, 4(1): 010000e2
作者单位
摘要
1 四川大学原子与分子物理研究所,四川,成都,610065
2 中国工程物理研究院高温高密度等离子体国家重点实验室,四川,绵阳,621900
在星光Ⅱ铷玻璃激光装置上,采用两级喇曼压缩系统产生的波长为308 nm的紫外光作为探针束,配合Nomarski偏振干涉仪对金平面靶冕区激光等离子体进行诊断.308 nm光具有波长短、亮度高、脉冲时间短、相干性好的优点,作为探针束诊断冕区产生的等离子体电子密度,可以与高功率激光装置打靶激光同步,实现有效地脉冲压缩,同时避免等离子体中谐波分量的干扰.实验获得了308 nm紫外探针光偏振干涉条纹图,在研究Abel反演算法的基础上,利用自行研制的基于Windows操作系统的实验数据处理软件,对实验数据进行了处理和分析,得到了冕区等离子体电子密度的空间分布.结果表明:两级喇曼压缩系统配偏振干涉能有效抑制主束谐波影??以更高时间分辨测量等离子体的更高密度区域.
偏振干涉 激光等离子体 电子密度 Abel反演 Polarization interferometer Laser-produced plasma Electron density Abel transform 
强激光与粒子束
2005, 17(6): 861

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!